The Grothendieck-lefschetz Theorem for Normal Projective Varieties
نویسندگان
چکیده
We prove that for a normal projective variety X in characteristic 0, and a base-point free ample line bundle L on it, the restriction map of divisor class groups Cl(X) → Cl(Y ) is an isomorphism for a general member Y ∈ |L| provided that dimX ≥ 4. This is a generalization of the Grothendieck-Lefschetz theorem, for divisor class groups of singular varieties. We work over k, an algebraically closed field of characteristic 0. Let X be a smooth projective variety over k and Y a smooth complete intersection subvariety of X. The Grothendieck-Lefschetz theorem states that if dimension Y ≥ 3, the Picard groups of X and Y are isomorphic. In this paper, we wish to prove an analogous statement for singular varieties, with the Picard group replaced by the divisor class group. Let X be an irreducible projective variety which is regular in codimension 1 (for example, X may be irreducible and normal). Recall that for such X, the divisor class group Cl(X) is defined as the group of linear equivalence classes of Weil divisors on X (see [10], II, §6). If dimX = d, then Cl(X) coincides with the Chow group CHd−1(X) as defined in Fulton’s book [7]. If Y ⊂ X is an irreducible Cartier divisor, which is also regular in codimension 1, there is a well-defined restriction homomorphism
منابع مشابه
Étale Cohomology, Lefschetz Theorems and Number of Points of Singular Varieties over Finite Fields
We prove a general inequality for estimating the number of points of arbitrary complete intersections over a finite field. This extends a result of Deligne for nonsingular complete intersections. For normal complete intersections, this inequality generalizes also the classical Lang-Weil inequality. Moreover, we prove the Lang-Weil inequality for affine as well as projective varieties with an ex...
متن کاملA Noether-lefschetz Theorem and Applications
In this paper we generalize the classical Noether-Lefschetz Theorem (see [7], [5]) to arbitrary smooth projective threefolds. More specifically, we prove that given any smooth projective threefold X over complex numbers and a very ample line bundle L on X, there is an integer n0(X,L) such that if n ≥ n0(X,L) then the Noether-Lefschetz locus of the linear system H(X,L) is a countable union of pr...
متن کاملExtensions of Vector Bundles with Application to Noether-lefschetz Theorems
Given a smooth, projective variety Y over an algebraically closed field of characteristic zero, and a smooth, ample hyperplane section X ⊂ Y , we study the question of when a bundle E on X, extends to a bundle E on a Zariski open set U ⊂ Y containing X. The main ingredients used are explicit descriptions of various obstruction classes in the deformation theory of bundles, together with Grothend...
متن کاملWeak Lefschetz Theorems
A new approach to Nori's weak Lefschetz theorem is described. The new approach, which involves the ¯ ∂-method, avoids moving arguments and gives much stronger results. In particular, it is proved that if X and Y are connected smooth projective varieties of positive dimension and f : Y − → X is a holomorphic immersion with ample normal bundle, then the image of π 1 (Y) in π 1 (X) is of finite in...
متن کاملO ct 2 00 4 CUBIC STRUCTURES , EQUIVARIANT EULER CHARACTERISTICS AND LATTICES OF MODULAR FORMS
in the Grothendieck group G0(Z[G]) of all finitely generated G-modules. If the action of G on X is tame, as we shall assume for most of the article, there is a refinement χP (X,F) of χ(X,F) in the Grothendieck group K0(Z[G]) of all finitely generated projective Z[G]modules. Let Xg be the subscheme of X fixed by the action of g ∈ G, and let X ′ = ∪e 6=g∈GX g. The goal of this paper is to compute...
متن کامل